Réinventer l’apprentissage du design : ateliers hybrides et immersifs au service de l’accessibilité numérique et de l’équité, diversité et inclusion

Contenu principal de l'article

Héla Oueslati

Résumé

L’intégration des technologies immersives et hybrides dans l’enseignement du design redéfinit les paradigmes pédagogiques en introduisant des environnements interactifs favorisant une compréhension plus intuitive des concepts complexes. La réalité virtuelle (RV) et la réalité augmentée (RA) offrent de nouvelles modalités d’apprentissage, mais leur adoption soulève des défis d’accessibilité et d’inclusion, interrogeant les principes d’équité éducative. L’accessibilité numérique ne se limite pas à une question technique; elle exige une approche inclusive prenant en compte les diversités cognitives, sensorielles et culturelles des apprenants. L’étude explore l’impact de ces technologies sur l’apprentissage du design, en posant l’hypothèse qu’une intégration réfléchie, combinée à des stratégies pédagogiques inclusives, pourrait améliorer l’efficacité éducative et démocratiser l’accès à la formation. Une méthodologie mixte a été adoptée, associant une enquête quantitative menée auprès de 65 enseignants et 120 étudiants issus d’établissements européens et tunisiens de design, ainsi que des entretiens qualitatifs pour identifier les freins et les leviers d’adaptation. Les résultats mettent en évidence des disparités dans l’adoption de ces outils, soulignant la nécessité d’une vigilance méthodologique et éthique pour assurer une appropriation équitable des innovations technopédagogiques et garantir un apprentissage accessible, durable et inclusif.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Renseignements sur l'article

Comment citer
Oueslati, H. (2025). Réinventer l’apprentissage du design : ateliers hybrides et immersifs au service de l’accessibilité numérique et de l’équité, diversité et inclusion. Médiations Et médiatisations, (21), 175–192. https://doi.org/10.52358/mm.vi21.459
Rubrique
Articles de recherche

Références

Al Shorman, A., Faris, H., et Aljarah, I. (2020). Unsupervised intelligent system based on one-class support vector machine and Grey Wolf optimization for IoT botnet detection. Journal of Ambient Intelligence and Humanized Computing, 11, 2809-2825. https://doi.org/10.1007/s12652-019-01387-y DOI: https://doi.org/10.1007/s12652-019-01387-y

Alhazmi, H., Imran, A., et AbuAlsheikh, M. (2022). How do socio-demographic patterns define digital privacy divide? IEEE Access, 10, 11296-11307. https://doi.org/10.1109/ACCESS.2022.3144436 DOI: https://doi.org/10.1109/ACCESS.2022.3144436

Al-Hunaiyyan, A., Al-Sharhan, S., et AlHajri, R. (2020). Prospects and challenges of learning management systems in higher Education. International Journal of Advanced Computer Science and Applications, 11(12). https://doi.org/10.14569/IJACSA.2020.0111209 DOI: https://doi.org/10.14569/IJACSA.2020.0111209

Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what it can do? W. W. Norton & Company.

Baltà-Salvador, R., Olmedo-Torre, N., Peña, M., et Renta-Davids, A.-I. (2021). Academic and emotional effects of online learning during the COVID-19 pandemic on engineering students. Education and Information Technologies, 26(6), 7407 7434. https://doi.org/10.1007/s10639-021-10593-1 DOI: https://doi.org/10.1007/s10639-021-10593-1

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., et Gratton, G. (2008). The effects of video game playing on attention, memory and executive control. Acta Psychologica, 129(3), 387-398. https://doi.org/10.1016/j.actpsy.2008.09.005 DOI: https://doi.org/10.1016/j.actpsy.2008.09.005

Borri-Anadon, C., Hirsch, S., et Audet, G. (2023). La prise en compte de la diversité ethnoculturelle, religieuse et linguistique en éducation : bref retour historique et enjeux actuels pour la recherche et la formation. Enfance en difficulté, 10. https://doi.org/10.7202/1108076ar DOI: https://doi.org/10.7202/1108076ar

Boyle, E. A., Connolly, T. M., Hainey, T., et Boyle, J. M. (2012). Engagement in digital entertainment games: A systematic review. Computers in Human Behavior, 28(3), 771-780. https://doi.org/10.1016/j.chb.2011.11.020 DOI: https://doi.org/10.1016/j.chb.2011.11.020

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8(2), 5-21. http://www.jstor.org/stable/1511637?origin=JSTOR-pdf DOI: https://doi.org/10.2307/1511637

Burgstahler, S. (2015). Universal design in higher education: From principles to practice. Harvard Education Press.

Chai, C. S., Koh, J. H. L., et Tsai, C. C. (2010). Facilitating Preservice Teachers’ Development of Technological, Pedagogical, and Content Knowledge (TPACK). Educational Technology & Society, 13, 63-73.

Chalkiadakis, A., Seremetaki, A., Kanellou, A., Kallishi, M., Morfopoulou, A., Moraitaki, M., et Mastrokoukou, S. (2024). Impact of artificial intelligence and virtual reality on educational inclusion: A systematic review of technologies supporting students with disabilities. Education Sciences, 14(11), article 1223. https://doi.org/10.3390/educsci14111223 DOI: https://doi.org/10.3390/educsci14111223

Choi, K. H. (2022). 3D dynamic fashion design development using digital technology and its potential in online platforms. Fashion and Textiles, 9, article 9. https://doi.org/10.1186/s40691-021-00286-1 DOI: https://doi.org/10.1186/s40691-021-00286-1

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323, 66-69. https://doi.org/10.1126/science.1167311 DOI: https://doi.org/10.1126/science.1167311

Di Lodovico, C. (2019). Making education: Exploring digital fabrication potential within fashion design learning process. EDULEARN19 Proceedings, 7747-7756. https://doi.org/10.21125/EDULEARN.2019.1877 DOI: https://doi.org/10.21125/edulearn.2019.1877

Di Lorenzo, E., Combes, V., Keister, J. E., Strub, P. T., Thomas, A. C., Franks, P. J. S., Franks, M.D. Ohman, J. C. Furtado, A. Bracco, S. J. Bograd, W. T. Peterson, F. B. Schwing, S. Chiba, B. Taguchi, S. Hormazabal, et Parada, C. (2013). Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography, 26(4), 68-8. https://doi.org/10.5670/oceanog.2013.76 DOI: https://doi.org/10.5670/oceanog.2013.76

Droste, M. (2002). Bauhaus 1919-1933. Bauhaus-archiv Berlin. Taschen. Bibliotheca Universalis.

Elmqaddem, N. (2019). Augmented reality and virtual reality in education. Myth or reality? International Journal of Emerging Technologies in Learning, 14(3), 234-242. https://doi.org/10.3991/ijet.v14i03.9289 DOI: https://doi.org/10.3991/ijet.v14i03.9289

Fernandez, M. (2017). Augmented-Virtual Reality: How to improve education systems. Higher Learning Research Communications, 7(1). https://doi.org/10.18870/hlrc.v7i1.373 DOI: https://doi.org/10.18870/hlrc.v7i1.373

Findeli, A. (1990). Moholy-Nagy’s design pedagogy in Chicago (1937-46). Design Issues, 7(1), 4-19. https://doi.org/10.2307/1511466 DOI: https://doi.org/10.2307/1511466

Gidiotis, I., et Hrastinski, S. (2024). Imagining the future of artificial intelligence in education: A review of social science fiction. Learning, Media and Technology, 1-13. https://doi.org/10.1080/17439884.2024.2365829 DOI: https://doi.org/10.1080/17439884.2024.2365829

Glogar, M., Petrak, S., et Mahnić Naglić, M. (2025). Digital technologies in the sustainable design and development of textiles and clothing – A literature review. Sustainability, 17(4), 1371. https://doi.org/10.3390/su17041371 DOI: https://doi.org/10.3390/su17041371

Härkönen, H., et Särmäkari, N. (2023). Copyright and digital fashion designers: The democratization of authorship? Journal of Intellectual Property Law & Practice, 18(1), 42-57. https://doi.org/10.1093/jiplp/jpac115 DOI: https://doi.org/10.1093/jiplp/jpac115

Kavanagh, S., Luxton-Reilly, A., Wuensche, B., et Plimmer, B. (2017). A systematic review of virtual reality in education. Themes in Science and Technology Education, 10(2), 85-119. http://ouranos.edu.uoi.gr/theste/index.php/theste/article/download/241/134

Koutamanis, A. (2023). Technologies, Inbetweenness and Affordances. Global Philosophy, 33, 5. https://doi.org/10.1007/s10516-023-09668-0 DOI: https://doi.org/10.1007/s10516-023-09668-0

Kruger, S., et Steyn, A. A. (2024). Developing breakthrough innovation capabilities in university ecosystems: A case study from South Africa. Technological Forecasting and Social Change, 198, article 123002. https://doi.org/10.1016/j.techfore.2023.123002 DOI: https://doi.org/10.1016/j.techfore.2023.123002

Laamarti, F., Eid, M., et El Saddik, A. (2014). An Overview of Serious Games. International Journal of Computer Games Technology, article 358152. https://doi.org/10.1155/2014/358152 DOI: https://doi.org/10.1155/2014/358152

Morello, E., et Ratti, C. (2009). Sunscapes: ‘Solar envelopes’ and the analysis of urban DEMs. Computers, Environment and Urban Systems, 33(1), 26-34. https://doi.org/10.1016/j.compenvurbsys.2008.09.005 DOI: https://doi.org/10.1016/j.compenvurbsys.2008.09.005

Oxman, R. (2001). Chapter 12 - The mind in design: A conceptual framework for cognition in design education. Dans C. M. Eastman, W. M. McCracken, et W. C. Newstetter (dir.), Design knowing and learning: Cognition in design education (p. 269-295). Elsevier Science. https://doi.org/10.1016/B978-008043868-9/50012-7 DOI: https://doi.org/10.1016/B978-008043868-9/50012-7

Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52, 4-39. https://doi.org/10.1016/j.destud.2017.06.001 DOI: https://doi.org/10.1016/j.destud.2017.06.001

Schon, D.A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic Books, New York.

Selwyn, N., Nemorin, S., et Johnson, N. (2017). High-tech, hard work: an investigation of teachers’ work in the digital age. Learning, Media and Technology, 42(4), 390-405. https://doi.org/10.1080/17439884.2016.1252770 DOI: https://doi.org/10.1080/17439884.2016.1252770

Sharma, A., Sharma, A., Tselykh, A., Bozhenyuk, A., Choudhury, T., Alomar, M. & Sánchez-Chero, M. (2023). Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sciences, 18(1), article 20220713. https://doi.org/10.1515/biol-2022-0713 DOI: https://doi.org/10.1515/biol-2022-0713

Simac, C. S. (2009). Nouvelles possibilités de création intrinsèques à la technologie d'impression numérique textile à jet d'encre (thèse de doctorat, Université de Haute Alsace-Mulhouse, France). https://theses.hal.science/tel-00618326v1

Slater, M., et Sanchez-Vives, M. V. (2016). Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and AI, 3, article 74. https://doi.org/10.3389/frobt.2016.00074 DOI: https://doi.org/10.3389/frobt.2016.00074

Swanson, D. H. (2009). Reflections on Teaching: North Central Sociological Association 2009 John F. Schnabel Lecture: I Teach. Sociological Focus, 42(3), 212-221. https://doi.org/10.1080/00380237.2009.10571352 DOI: https://doi.org/10.1080/00380237.2009.10571352

Tene T., Vique López D. F., Valverde Aguirre P. E., Orna Puente L. M., et Vacacela Gomez C. (2024). Virtual reality and augmented reality in medical education: an umbrella review. Front. Digit. Health, 6, article 1365345. https://doi.org/10.3389/fdgth.2024.1365345 DOI: https://doi.org/10.3389/fdgth.2024.1365345

Zheng, R. Z. (2020). Learning with immersive technology: A cognitive perspective. Dans R. Z. Zheng (dir.), Cognitive and affective perspectives on immersive technology in education (p. 1-21). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-3250-8.ch001 DOI: https://doi.org/10.4018/978-1-7998-3250-8.ch001