El desarrollo profesional de los docentes con el apoyo y uso de la inteligencia artificial: Una revisión de la literatura
Contenido principal del artículo
Resumen
El desarrollo profesional (DP) de los docentes constituye una de las formas más efectivas para mejorar la calidad de la educación y prepararlos para nuevas realidades (Mukamurera, 2014). Ante la llegada de la Inteligencia Artificial (IA) generativa, muchos anticipan la necesidad de formar a los docentes para garantizar un uso responsable de esta tecnología emergente al tiempo que también se presenta como una solución para mejorar el recorrido de DP de los docentes. Esta revisión bibliográfica busca, por tanto, comprender en qué medida la IA puede enriquecer el DP de los docentes. Para ello, se analizaron 24 artículos a partir de las 7 características del DP docente propuestas por Darling-Hammond et al. (2017). La IA puede en cierta medida fortalecer las características del DP de los docentes, pero sus efectos sobre la práctica docente requieren una investigación más profunda. Para futuras investigaciones, se recomienda analizar cómo la IA puede potenciar las características de Darling-Hammond et al. (2017) con ayuda del modelo SAMR, con el fin de descubrir en qué medida estas características podrían ser (S) sustituidas, (A) aumentadas, (M) modificadas o (R) redefinidas por la IA (Puentedura, 2013), así como los efectos que dichos cambios podrían tener en la agencia del docente.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Citas
AI for Teachers. (2023). Comparative European evaluation report.
Andler (2023). Intelligence artificielle, intelligence humaine : la double énigme. Gallimard.
Bartolomé, A., Castañeda, L., et Adell, J. (2018). Personalisation in educational technology: The absence of underlying pedagogies. International Journal of Educational Technology in Higher Education, 15(14). https://doi.org/10.1186/s41239-018-0095-0 DOI: https://doi.org/10.1186/s41239-018-0095-0
Berkeley Library. (2023, 26 octobre). Education 268: First-Year Doctoral Seminar-Education Research and Practices: Find Articles.
Boulay, M. F., Hamel, C. et Hamel, S. (2023, 16 avril). Core Features of Effective Professional Development for Teachers: What Should PD Programs be Aligned With? [Présentation]. AERA Annual Meeting, Chicago, IL, États-Unis. DOI: https://doi.org/10.3102/2013346
Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., et Zhao, W. (2016, 9-15 juillet). Detecting Student Emotions in Computer-Enabled Classrooms. IJCAI International Joint Conference on Artificial Intelligence, New York, NY, États-Unis. https://www.ijcai.org/Proceedings/16/Papers/615.pdf
Burleson, W., et Picard, R. W. (2007). Gender-Specific Approaches to Developing Emotionally Intelligent Learning Companions. IEEE Intelligent Systems, 22(4), 62‑69. https://doi.org/10.1109/MIS.2007.69 DOI: https://doi.org/10.1109/MIS.2007.69
Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138. https://doi.org/10.1016/j.chb.2022.107468 DOI: https://doi.org/10.1016/j.chb.2022.107468
Celik, I., Dindar, M., Muukkonen, H., et Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616-630.
https://doi.org/10.1007/s11528-022-00715-y DOI: https://doi.org/10.1007/s11528-022-00715-y
Chaipidech, P., Srisawasdi, N., Kajornmanee, T., et Chaipah, K. (2022). A personalized learning system-supported professional training model for teachers' TPACK development. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100064 DOI: https://doi.org/10.1016/j.caeai.2022.100064
Chen, Y., et Xu, S. (2022). Cultivation Method Analysis for Teachers’ Teaching Ability Driven by Artificial Intelligence Technology. Advances in multimedia, 2022. https://doi.org/10.1155/2022/5298291 DOI: https://doi.org/10.1155/2022/5298291
Chounta, I. A., Bardone, E., Raudsep, A., et Pedaste, M. (2022). Exploring teachers’ perceptions of Artificial Intelligence as a tool to support their practice in Estonian K-12 education. International Journal of Artificial Intelligence in Education, 32(3), 725-755. https://doi.org/10.1007/s40593-021-00243-5 DOI: https://doi.org/10.1007/s40593-021-00243-5
Collin, S., Lepage, A., et Nebel, L. (2023). Enjeux éthiques et critiques de d’intelligence artificielle en éducation : une revue systématique de la littérature. Canadian Journal of Learning and Technology, 49(4), 1-29. https://doi.org/10.21432/cjlt28448 DOI: https://doi.org/10.21432/cjlt28448
Conseil de l’innovation du Québec (2024). Prêt pour l’IA : réflexion collective sur l’encadrement de l’IA. https://conseilinnovation.quebec/wp-content/uploads/2024/02/Rapport_IA_CIQ.pdf
Conseil supérieur de l’éducation et Commission éthique en sciences et technologies (2024). Intelligence artificielle générative en enseignement supérieur : enjeux pédagogiques et éthiques. https://tinyurl.com/26x43e9x
Conseil supérieur de l’éducation (2014). Le développement professionnel, un enrichissement pour toute la profession enseignante. https://www.cse.gouv.qc.ca/wp-content/uploads/2014/06/50-0483-AV-developpement-professionnel.pdf
Cukurova, M., Kralj, L., Hertz, B., et Saltidou, E. (2024). Professional Development for Teachers in the Age of AI. http://www.eun.org/news/detail?articleId=11193331
Dai, Y. (2023). Negotiation of epistemological understandings and teaching practices between primary teachers and scientists about artificial intelligence in professional development. Research in Science Education, 53(3), 577-591. https://doi.org/10.1007/s11165-022-10072-8 DOI: https://doi.org/10.1007/s11165-022-10072-8
Dai, Y., Chai, C. S., Lin, P. Y., Jong, M. S. Y., Guo, Y., et Qin, J. (2020). Promoting students’ well-being by developing their readiness for the artifcial intelligence age. Sustainability, 12(16), 6597. https://doi.org/10.3390/su12166597 DOI: https://doi.org/10.3390/su12166597
Darling-Hammond, L., Hyler, M. E., et Gardner, M. (2017). Effective teacher professional development. https://tinyurl.com/baeep8xj DOI: https://doi.org/10.54300/122.311
Deng, H., Jia, W., et Chai, D. (2022). Discussion on Innovative Methods of Higher Teacher Education and Training Based on New Artificial Intelligence. Security and Communication Networks, 2022. https://doi.org/10.1155/2022/3899413 DOI: https://doi.org/10.1155/2022/3899413
Desimone, L. M., et Garet, M. S. (2015). Best practices in teacher's professional development in the United States. Psychology, Society, & Education, 7(3), 252-263. https://ojs.ual.es/ojs/index.php/psye/article/view/515 DOI: https://doi.org/10.25115/psye.v7i3.515
Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational researcher, 38(3), 181-199. https://doi.org/10.3102/0013189X08331140 DOI: https://doi.org/10.3102/0013189X08331140
Ding, Y. (2021). Performance analysis of public management teaching practice training based on artificial intelligence technology. Journal of Intelligent & Fuzzy Systems, 40(2), 3787-3800. https://doi.org/10.3233/JIFS-189412 DOI: https://doi.org/10.3233/JIFS-189412
Fidan, M. et Gencel, N. (2022). Supporting the Instructional Videos with Chatbot and Peer Feedback Mechanisms in Online Learning: The Effects on Learning Performance and Intrinsic Motivation. Journal of Educational Computing Research, 60(7). https://doi.org/10.1177/07356331221077901 DOI: https://doi.org/10.1177/07356331221077901
Gaudreau, N., et Nadeau, M. F. (2015). Enseigner aux élèves présentant des difficultés comportementales : dispositifs pour favoriser le développement des compétences des enseignants. La nouvelle revue de l'adaptation et de la scolarisation, (4), 27-45. https://doi.org/10.3917/nras.072.0027 DOI: https://doi.org/10.3917/nras.072.0027
Hamel, C., Laferrière, T., Turcotte, S., et Allaire, S. (2013). Un regard rétrospectif sur le développement professionnel des enseignants dans le modèle de l’École éloignée en réseau. Sticef (Sciences et technologies de l'information et de la communication pour l'éducation et la formation), 20, 1-30. https://constellation.uqac.ca/id/eprint/3327/1/Hamel_etal_sticef_2013.pdf DOI: https://doi.org/10.3406/stice.2013.1061
Hew, K. F., Lan, M., Tang, Y., Jia, C., et Lo, C. K. (2019). Where is the “theory” within the field of educational technology research? British Journal of Educational Technology, 50(3), 956-971. https://doi.org/10.1111/bjet.12770 DOI: https://doi.org/10.1111/bjet.12770
Holmes, W., et Porayska-Pomsta, K. (2023). The ethics of artificial intelligence in education. Routledge Taylor. DOI: https://doi.org/10.4324/9780429329067
Hrastinski, S., Olofsson, A. D., Arkenback, C., Ekström, S., Ericsson, E., Fransson, G., Jaldemark, J., Ryberg, T., Öberg, L.-M., Fuentes, A., Gustafsson, U., Humble, N., Mozelius, P., Sundgren, M., et Utterberg, M. (2019). Critical Imaginaries and Reflections on Artificial Intelligence and Robots in Postdigital K-12 Education. Postdigital Science and Education, 1(2), 427 445. https://doi.org/10.1007/s42438-019-00046-x DOI: https://doi.org/10.1007/s42438-019-00046-x
Hu, J. (2021). Teaching evaluation system by use of machine learning and artificial intelligence methods. International Journal of Emerging Technologies in Learning (iJET), 16(5), 87-101. https://www.learntechlib.org/p/220079/ DOI: https://doi.org/10.3991/ijet.v16i05.20299
Jain, G. P., Gurupur, V. P., Schroeder, J. L., et Faulkenberry, E. D. (2014). Artificial intelligence-based student learning evaluation: A concept map-based approach for analyzing a student’s understanding of a topic. IEEE Transactions on Learning Technologies, 7(3), 267-279. https://doi.org/10.1109/TLT.2014.2330297 DOI: https://doi.org/10.1109/TLT.2014.2330297
Kasepalu, R., Prieto, L. P., Ley, T., et Chejara, P. (2022, February). Teacher artificial intelligence-supported pedagogical actions in collaborative learning coregulation: A wizard-of-oz study. Frontiers in Education, 7, 736194. https://doi.org/10.3389/feduc.2022.736194 DOI: https://doi.org/10.3389/feduc.2022.736194
Kennedy, M. M. (2016). How does professional development improve teaching? Review of educational research, 86(4), 945-980. https://doi.org/10.3102/0034654315626800 DOI: https://doi.org/10.3102/0034654315626800
Korthagen, F. (2017). Inconvenient truths about teacher learning: Towards professional development 3.0. Teachers and teaching, 23(4), 387-405. https://doi.org/10.1080/13540602.2016.1211523 DOI: https://doi.org/10.1080/13540602.2016.1211523
Kuleto, V., Ilić, M. P., Bucea-Manea-Țoniş, R., Ciocodeică, D. F., Mihălcescu, H., et Mindrescu, V. (2022). The Attitudes of K–12 Schools’ Teachers in Serbia towards the Potential of Artificial Intelligence. Sustainability, 14(14), 8636. https://doi.org/10.3390/su14148636 DOI: https://doi.org/10.3390/su14148636
Lameras, P., et Arnab, S. (2021). Power to the teachers: an exploratory review on artificial intelligence in education. Information, 13(1), 14. https://doi.org/10.3390/info13010014 DOI: https://doi.org/10.3390/info13010014
Lampos, V., Mintz, J., et Qu, X. (2021). An artificial intelligence approach for selecting effective teacher communication strategies in autism education. npj Science of Learning, 6(1), 25. https://doi.org/10.1038/s41539-021-00102-x DOI: https://doi.org/10.1038/s41539-021-00102-x
Lee, D., et Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191, 104646. https://doi.org/10.1016/j.compedu.2022.104646 DOI: https://doi.org/10.1016/j.compedu.2022.104646
Lepage, A., et Roy, N. (2023). Une recension des écrits de 1970 à 2022 sur les rôles de l’enseignant et de l’intelligence artificielle dans le domaine de l’IA en éducation. Médiations et médiatisations, (16), 9-50. https://doi.org/10.52358/mm.vi16.304 DOI: https://doi.org/10.52358/mm.vi16.304
Lessard, C. (2021). Évaluation des effets du développement professionnel des acteurs de l’éducation : rapport de recherche. Centre national d’étude des systèmes scolaires. https://cnam.hal.science/hal-03245284/
Li, B., Fei, Y., et Liu, H. (2021). An artificial intelligence based model for evaluation of college students’ ability and characteristics through teaching evaluation. Journal of Intelligent & Fuzzy Systems, 40(2), 3397-3407. https://doi.org/10.3233/JIFS-189378 DOI: https://doi.org/10.3233/JIFS-189378
McStay, A. (2020). Emotional AI, soft biometrics and the surveillance of emotional life: An unusual consensus on privacy. Big Data & Society, 7(1). https://doi.org/10.1177/2053951720904386 DOI: https://doi.org/10.1177/2053951720904386
Moher, D., Stewart, L., et Shekelle, P. (2016). Implementing PRISMA-P: recommendations for prospective authors. Systematic reviews, 5, 1-2. https://doi.org/10.1186/s13643-016-0191-y DOI: https://doi.org/10.1186/s13643-016-0191-y
Mukamurera, J. (2014). Le développement professionnel et la persévérance en enseignement. Dans L. Portelance, S. Martineau et J. Mukamurera (dir.), Le développement professionnel et la persévérance en enseignement. Développement et persévérance professionnels dans l’enseignement : oui, mais comment? (p. 12-33). Presses de l’Université du Québec.
Newman, M., et Gough, D. (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application. Dans O. Zawacki-Richter, M. Kerres, S. Bedenlier, M. Bond, et K. Buntins (dir.), Systematic Reviews in Educational Research (p. 3-22). Springer VS. DOI: https://doi.org/10.1007/978-3-658-27602-7_1
Phillips, T. M., Saleh, A., et Ozogul, G. (2022). An AI toolkit to support teacher reflection. International Journal of Artificial Intelligence in Education, 1-24. https://doi.org/10.1007/s40593-022-00295-1 DOI: https://doi.org/10.1007/s40593-022-00295-1
Parlement de l’Union européenne (2023). Législation sur l’IA.
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
Porayska-Pomsta, K. (2016). AI as a methodology for supporting educational praxis and teacher metacognition. International Journal of Artificial Intelligence in Education, 26, 679-700. https://doi.org/10.1007/s40593-016-0101-4 DOI: https://doi.org/10.1007/s40593-016-0101-4
Puentedura, R. R. (2013). SAMR and TPCK: An introduction. Sous licence CC BY-NC-SA. https://tinyurl.com/yv2kpvtx
Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., et Fischer, F. (2023). Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning. Learning and Instruction, 83. https://doi.org/10.1016/j.learninstruc.2022.101620 DOI: https://doi.org/10.1016/j.learninstruc.2022.101620
Samarakou, M., Fylladitakis, E. D., Früh, W. G., Hatziapostolou, A., et Gelegenis, J. J. (2015). An advanced eLearning environment developed for engineering learners. International Journal of Emerging Technologies in Learning, 10(3), 22–33. https://doi.org/10.3991/ijet.v10i3.4484 DOI: https://doi.org/10.3991/ijet.v10i3.4484
Tao, B., Díaz, V., et Guerra, Y. (2019). Artificial intelligence and education, challenges and disadvantages for the teacher. Arctic Journal, 72(12), 30-50. https://tinyurl.com/yc549rur
UNESCO. (2024). Orientations pour l’intelligence artificielle générative dans l’éducation et la recherche. https://doi.org/10.54675/HBCX3851 DOI: https://doi.org/10.54675/HBCX3851
Vlasova, E. Z., Avksentieva, E. Y., Goncharova, S. V., et Aksyutin, P. A. (2019). Artificial intelligence-The space for the new possibilities to train teachers. Espacios, 40(9), 17.
https://ksra.eu/wp-content/uploads/2020/06/1999678332b84d1e3c79887e91b0e3293c4f.pdf
Zawacki-Richter, O., Marín, V. I., Bond, M., et Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0
Zhu, W., Marquez, A., et Yoo, J. (2015). “Engineering economics jeopardy!” Mobile app for university students. Engineering Economist, 60(4), 291-306. https://doi.org/10.1080/0013791X.2015.1067343 DOI: https://doi.org/10.1080/0013791X.2015.1067343