The Challenges of AI in Education: From Data Protection to Algorithmic Bias
Main Article Content
Abstract
This article examines the impact of artificial intelligence (AI) on the field of education and explores its benefits and challenges. The use of AI in the education sector offers many advantages such as the automation of repetitive administrative tasks and the personalisation of learning paths. However, this raises ethical concerns about the protection of personal data and the risk of creating algorithmic biases. In addition, we address other challenges: those related to the opposition between automated and human assessment as well as the complex implications of facial recognition in an educational context. It is essential that a considered and ethical approach to the deployment of AI in education is thought through, emphasising the need for clear and transparent ethical principles and careful pedagogical reflection. We recommend the use of open-source AI tools to promote transparency and compliance with current regulations.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ahajjam, T., Haidar, A., et Farhaoui, Y. (2021). Artificial Intelligence and Machine Learning to Predict Student Performance during the COVID-19. Procedia Comput Sci. (2021)184, 835-840. https://doi.org/10.1016/j.procs.2021.03.104 DOI: https://doi.org/10.1016/j.procs.2021.03.104
Akyuz, Y. (2020). Effects of Intelligent Tutoring Systems (ITS) on Personalized Learning (PL). Creative Education, 11(6), 953-978. https://doi.org/10.4236/ce.2020.116069 DOI: https://doi.org/10.4236/ce.2020.116069
Alazemi, N. (2022). The impact of digital learning resources on developing the educational process for faculty members at the PAAET. Amazonia Investiga. 11(59). 54-63. https://doi.org/10.34069/AI/2022.59.11.5 DOI: https://doi.org/10.34069/AI/2022.59.11.5
Anctil, D. (2023). L’éducation supérieure à l’ère de l’IA générative. Réflexion pédagogique. Pédagogie collégiale, 36(3). https://eduq.info/xmlui/bitstream/handle/11515/38833/Anctil-36-3-23.pdf
Aubry, A., et Bourdin, B. (2016). Les tests BV9 et B53 peuvent-ils prédire la réussite scolaire ? L’Orientation scolaire et professionnelle. 45(3). https://doi.org/10.4000/osp.5070 DOI: https://doi.org/10.4000/osp.5070
Bablu, T. A. (2024). Machine Learning in Automated Assessment: Enhancing Objectivity and Efficiency in Educational Evaluations. Journal of Advanced Computing Systems, 4(7). https://scipublication.com/index.php/JACS/article/view/20/9
Bourda Y. (2004). Pourquoi indexer les ressources pédagogiques numériques ? [compte-rendu 16 novembre 2004 d’une communication orale]. https://tinyurl.com/4y4ee94t
Bulger, M. (2016). Personalized Learning: The Conversations We’re Not Having. Data & Society. https://datasociety.net/pubs/ecl/PersonalizedLearning_primer_2016.pdf
Bušljeta, R. (2013). Effective Use of Teaching and Learning Resources. Czech-Polish Historical and Pedagogical Journal, 5, 55-69. https://doi.org/10.2478/cphpj-2013-0014 DOI: https://doi.org/10.2478/cphpj-2013-0014
Chan, C.K.Y., et Tsi, L.H.Y. (2023). The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? https://tinyurl.com/wk8mt69m
Chudleigh, S. (2024, 31 mai). Qu’est-ce qu’un agent d’intelligence artificielle ? Botpress. https://botpress.com/fr/blog/what-is-an-ai-agent
Christodoulou, A., et Angeli, C. (2022). Adaptive Learning Techniques for a Personalized Educational Software in Developing Teachers’ Technological Pedagogical Content Knowledge. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.789397 DOI: https://doi.org/10.3389/feduc.2022.789397
Commission européenne. (2024a). EU AI Act. Chapter I: General Provisions. Chapter I: General Provisions. Article 3, Definitions (1). https://www.euaiact.com/article/3
Commission européenne. (2024b). EU AI Act. Chapter V: General-Purpose AI Models. Section 2: Obligations for Providers of General Purpose AI Models. Article 53. https://www.euaiact.com/article/53
Commission nationale de l’informatique et des libertés (2022, 25 mars), Intelligence artificielle, de quoi parle-t-on ? https://www.cnil.fr/fr/intelligence-artificielle/intelligence-artificielle-de-quoi-parle-t-on
Connac, S. (2022). La personnalisation des apprentissages : Agir face à l’hétérogénéité à l’école et au collège, ESF Sciences humaines. http://media.sodis.fr/cat/9782710145455/15/9782710145455-15-220816_151933.pdf DOI: https://doi.org/10.14375/NP.9782710145493
Conseil supérieur de l’éducation et Commission de l’éthique en science et en technologie. (2024). Intelligence artificielle générative en enseignement supérieur : enjeux pédagogiques et éthiques. https://tinyurl.com/2ksfct4p
Corbière, M. (1997). Une approche multidimensionnelle de la prédiction de la réussite scolaire. L’Orientation scolaire et professionnelle. 26(1), 109-135. https://www.persee.fr/doc/binop_0249-6739_1997_num_26_1_1178 DOI: https://doi.org/10.3406/binop.1997.1178
Corno, L. (2008). On Teaching Adaptively. Educational Psychologist, 43:3, 161-173, DOI: 10.1080/00461520802178466. https://doi.org/10.1080/00461520802178466. DOI: https://doi.org/10.1080/00461520802178466
Drouin, G. (2021). L’évolution et le concept de race avec Guy Drouin [balado]. Radio-Canada. https://tinyurl.com/259x7sxm
Dhara, S., Chatterjee, S., Chaudhuri, R., Goswami, P. A. et Ghosh, S. (2022). Chapter 8: Artificial Intelligence in Assessment of Students' Performance. Dans Artificial Intelligence in Higher Education: A Practical Approach (1re éd.) (p.153-167). Taylor and Francis. https://doi.org/10.1201/9781003184157-8 DOI: https://doi.org/10.1201/9781003184157-8
Fédération étudiante collégiale du Québec (2022). Note sur l’utilisation de l’intelligence artificielle sur les campus. 118e Congrès ordinaire, Commission des affaires collégiales. https://docs.fecq.org/FECQ/M%C3%A9moires%20et%20avis/2022-2023/Note-IA_118eCo_LaMalbaie.pdf
Gras, B. (2019). Éthique des Learning Analytics. Distances et médiations des savoirs, 26. https://doi.org/10.4000/dms.3768 DOI: https://doi.org/10.4000/dms.3768
Gutwoska, A. (2024, 3 juillet). What are AI Agents? IBM. 3 juillet 2024. https://www.ibm.com/think/topics/ai-agents
Hassanin, N. (2023, 23 aout). Law professor explores racial bias implications in facial recognition technology. UCalgary News. University of Calgary.
Hutchinson, A. (2024, 27 janvier). Meta Loses Data Scraping Case, Highlighting the Need For Clarified Regulation in a Social Media Context. Social Media Today.
Lin, C.-C., Huang, A.Y.Q., et Lu, O.H.T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learn. Environ. 10, 41. https://doi.org/10.1186/s40561-023-00260-y DOI: https://doi.org/10.1186/s40561-023-00260-y
Luckin, R. (2023, 14 juillet). Yes, AI could profoundly disrupt education. But maybe that’s not a bad thing. The Guardian. https://tinyurl.com/wh3rv6ks
OECD. (2024, 6 mars). What is AI? Can you make a clear distinction between AI and non-AI systems? https://oecd.ai/en/wonk/definition
New York State Education Department. (2023). State Education Department Issues Determination on Biometric Identifying Technology in Schools. https://tinyurl.com/mr38unr5
Parlement européen. (2024). Proposal for a Regulation of the European parliament and of the Council laying down harmonised rules on the artificial intelligence (Artificial Intelligence Act) and amending certain union legislative. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
Psyché, V. et Ruer, P. (2019). L’apprentissage adaptatif intelligent. I Le Tableau, 8(4).
https://pedagogie.uquebec.ca/le-tableau/lapprentissage-adaptatif-intelligent
Reiners, T., Dreher, C. et Dreher, H. (2011). Six Key Topics for Automated Assessment Utilisation and Acceptance. Informatics in Education, 10(1), 47-64, Vilnius University. https://files.eric.ed.gov/fulltext/EJ1064287.pdf DOI: https://doi.org/10.15388/infedu.2011.04
Romainville, M. (1997). Peut-on prédire la réussite d’une première année universitaire ? Revue française de pédagogie. L’éducation préscolaire, 119, pp. 81-90. https://www.persee.fr/doc/rfp_0556-7807_1997_num_119_1_1169 DOI: https://doi.org/10.3406/rfp.1997.1169
Salazar L. R., Peeples, S. F., Brooks, M. E. (2024). Generative AI Ethical Considerations and Discriminatory Biases on Diverse Students Within the Classroom. Dans S. Elmoudden et J. Wrench (dir.), The Role of Generative AI in the Communication Classroom (p. 191-213). IGI Global. https://doi.org/10.4018/979-8-3693-0831-8.ch010 DOI: https://doi.org/10.4018/979-8-3693-0831-8.ch010
Sankin, A., et Mattu, S. (2023, 2 octobre), Predictive Policing Software Terrible at Predicting Crimes. Wired. https://www.wired.com/story/plainfield-geolitica-crime-predictions/
Shah, K, Ahmed, J., Shenoy, N. et Srikant, N. (2013). How different are students and their learning styles? International Journal of Research in Medical Sciences, 1(3), 212–215. https://doi.org/10.5455/2320-6012.ijrms20130808 DOI: https://doi.org/10.5455/2320-6012.ijrms20130808
Sheikh, H., Prins, C., et Schrijvers, E. (2023). Artificial Intelligence: Definition and Background. Dans Sheikh, H., Prins, C., et Schrijvers, E. (dir.), Mission AI. Research for Policy. Springer. https://doi.org/10.1007/978-3-031-21448-6_2 DOI: https://doi.org/10.1007/978-3-031-21448-6_2
Torres, J.-C. (2016). Les enjeux de la différenciation pédagogique : entre résolutions formelles et indécisions pratiques. Administration & Éducation, 2 (150), 159-164. https://doi.org/10.3917/admed.150.0159 DOI: https://doi.org/10.3917/admed.150.0159
Tudor, M.-D. (2022). La traduction des expressions idiomatiques à l’aide de moteurs de traduction automatique. Analele Universității Bucuresti. Limbi si Literaturi Străine, 68(2), 109-128. https://tinyurl.com/22zy55ku
UNESCO. (2024). Education for sustainable development. Sustainable development. https://en.unesco.org/themes/education/sdgs/material/04
Vang, C. (2022). The Impact of Dynamic Difficulty Adjustment on Player Experience in Video Games. Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal: Vol. 9: Iss. 1, Article 7. https://doi.org/10.61366/25762176.1105 DOI: https://doi.org/10.61366/2576-2176.1105
Yan, L., Martinez-Maldonado, R., et Gasevic, D. (2024). Generative Artificial Intelligence in Learning Analytics: Contextualising Opportunities and Challenges through the Learning Analytics Cycle. Dans LAK '24: Proceedings of the 14th Learning Analytics and Knowledge Conference (p. 101-111). ACM. https://doi.org/10.1145/3636555.3636856 DOI: https://doi.org/10.1145/3636555.3636856
Wang, W., Xu, K., Niu, H. et Miao, X. (2020). Emotion Recognition of Students Based on Facial Expressions in Online Education Based on the Perspective of Computer Simulation. Complexity. 2020. 1-9. 10. https://doi.org/10.1155/2020/4065207 DOI: https://doi.org/10.1155/2020/4065207
Wiley, J., Hastings, P., Blaum, D., Jaeger, A. J., Hugues, S., Wallace, P., Griffin, T. D. et Britt, M. A. (2017). Different Approaches to Assessing the Quality of Explanations Following a Multiple-Document Inquiry Activity in Science. International Journal of Artificial Intelligence in Education, 27, 758-790. https://doi.org/10.1007/s40593-017-0138-z DOI: https://doi.org/10.1007/s40593-017-0138-z
Wu, S., Koo, M., Blum, L., Black, A., Kao, L. Fei, Z., Scalzo, F. et Kurtz, I. (2024, 17 janvier) Benchmarking Open-Source Large Language Models, GPT-4 and Claude 2 on Multiple-Choice Questions in Nephrology. NEJM AI. 1(2) Datasets, Benchmarks, and Protocols. https://doi.org/10.1056/AIdbp2300092 DOI: https://doi.org/10.1056/AIdbp2300092
Zovko, V. et Gudlin, M. (2019). Artificial Intelligence as a Disruptive Technology in Education. The Future of Education.9th ed. International Conference. https://tinyurl.com/326uncnr