A Process and Principles for the Design and Development of Immersive Virtual Reality Educational Applications

Main Article Content

Christine Marquis
Bruno Poellhuber
Sébastien Wall-Lacelle
Normand Roy

Abstract

Virtual reality, which involves a computer-generated environment that gives a sense of reality, presence, and engagement (Pellas et al., 2020), has recently seen significant developments in education (Freina and Ott, 2015; Jensen and Konradsen, 2018). Its advantages, including visualizing abstract concepts, performing experimental tasks that are difficult or impossible in real life, as well as its' capacity to facilitate motivation, engagement, and transfer of learning, make it particularly useful for science learning (Dalgarno and Lee, 2010; Lewis et al., 2021; Shin, 2017). Anchored in an approach adapted from pedagogical value analysis (Rocque et al., 1998), the ADDIE model, the Art of Serious Game Design (Ryerson University, 2018), and a virtual reality application design model (Vergara et al., 2017), we iteratively developed different virtual reality serious games in CEGEP science courses (biology, chemistry, and physics). We ultimately piloted them in classrooms in the fall of 2022. This article aims to share the process used for developing our VR serious games, the results of each step of this process, and the principles that emerged from it. This will be useful to those in the education community who wish to develop virtual reality applications and/or serious games.

Article Details

How to Cite
Marquis, C., Poellhuber, B., Wall-Lacelle, S., & Roy, N. (2023). A Process and Principles for the Design and Development of Immersive Virtual Reality Educational Applications. Mediations and Mediatizations, (15), 99–122. https://doi.org/10.52358/mm.vi15.356
Section
Research articles

References

Alvarez, M. G. (2007). Du jeu au serious game. Approches culturelle, pragmatique et formelle [thèse de doctorat, Université Toutouse]. http://ja.games.free.fr/These_SeriousGames/TheseSeriousGames.pdf

Barmby, P., Kind, P. M., et Jones, K. (2008). Examining Changing Attitudes in Secondary School Science. International Journal of Science Education, 30(8), 1075-1093. https://doi.org/10.1080/09500690701344966

Beichner, R. J., Saul, J. M., Allain, R. J., Deardorff, D. L., et Abbott, D. S. (2000). Introduction to SCALE-UP: Student- Centered Activities for Large Enrollment University Physics. (Research report). https://files.eric.ed.gov/fulltext/ED459062.pdf

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer Science & Business Media.

Dalgarno, B., et Lee, M. J. W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10-32. https://doi.org/10.1111/j.1467-8535.2009.01038.x

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., et Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111

Freina, L., et Ott, M. (2015). A Literature Review on Immersive Virtual Reality in Education: State Of The Art and Perspectives. The International Scientific Conference eLearning and Software for Education, 1, 133. https://www.itd.cnr.it/download/eLSE%202015%20Freina%20Ott%20Paper.pdf

Jensen, L., et Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529. https://doi.org/10.1007/s10639-017-9676-0

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75-83.

Lewis, F., Plante, P., et Lemire, D. (2021). Pertinence, efficacité et principes pédagogiques de la réalité virtuelle et augmentée en contexte scolaire : Une revue de littérature. Médiations et médiatisations, (5), 11-27. https://doi.org/10.52358/mm.vi5.161

Loiselle, J., et Harvey, S. (2008). La recherche développement en éducation : Fondements, apports et limites. Recherches qualitatives, 27(1), 40-59.

Mütterlein, J. (2018). The Three Pillars of Virtual Reality? Investigating the Roles of Immersion, Presence, and Interactivity. Proceedings of the 51st Hawaii International Conference on System Sciences, 9. https://doi.org/10.24251/HICSS.2018.174

Nye, B. D., et Silverman, B. G. (2012). Affordance. In N. M. Seel (dir.), Encyclopedia of the Sciences of Learning (pp. 179-183). New York, NY: Springer. https://doi.org/10.1007/978-1-4419-1428-6_369

Oh, K., et Nussli, N. (2014). Teacher training in the use of a three-dimensional immersive virtual world: Building understanding through first-hand experiences. Journal of Teaching and Learning with Technology, 3(1), 33-58. https://doi.org/10.14434/jotlt.v3n1.3956

Pellas, N., Dengel, A., et Christopoulos, A. (2020). A Scoping Review of Immersive Virtual Reality in STEM Education. IEEE Transactions on Learning Technologies, 1-14. https://doi.org/10.1109/TLT.2020.3019405

Poellhuber, B. (2017). Une réflexion et une expérimentation à partir du contexte des enseignants concepteurs de leurs propres vidéos pédagogiques. Distances et médiations des savoirs. 2017(20). https://doi.org/10.4000/dms.2012

Potvin, P., et Hasni, A. (2014). Analysis of the Decline in Interest Towards School Science and Technology from Grades 5 Through 11. Journal of Science Education and Technology, 23(6), 784-802. https://doi.org/10.1007/s10956-014-9512-x

Rocque, S., Langevin, J., et Riopel, D. (1998). L’analyse de la valeur pédagogique au Canada : Méthodologie de développement de produits pédagogiques. La valeur des produits, procédés et services, 76, 6-11.

Rosenfield, S., Dedic, H., Dickie, L., Rosenfield, E., Aulls, M., Koestner, R., Krishtalka, A., Milkman, K., et Abrami, P. (2005). Étude des facteurs aptes à influencer la réussite et la rétention dans les programmes de la science aux cégeps anglophones. Vanier College.

Ryerson University. (2018). The Art of Serious Game Design. Toronto Metropolitan University Pressbooks. https://pressbooks.library.torontomu.ca/guide/ . Sous licence CC BY-NC-SA.

Shin, D.-H. (2017). The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality, Elsevier Enhanced Reader. Telematics and Informatics, 34(8), 1828-1838. https://doi.org/10.1016/j.tele.2017.05.013

Slater, M., et Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 6(6), 603-616.

Sherman, W. R., et Craig, A. B. (2018). Understanding Virtual Reality: Interface, Application, and Design. Morgan Kaufmann.

Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73-93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x

Taber, K. S. (2001). Building the Structural Concepts of Chemistry: Some Considerations from Educational Research. Chemistry Education Research and Practice, 2(2), 123. https://doi.org/10.1039/b1rp90014e

Vergara, D., Rubio, M. P., et Lorenzo, M. (2017). On the Design of Virtual Reality Learning Environments in Engineering. Multimodal Technologies and Interaction, 1(2), Article 2. https://doi.org/10.3390/mti1020011

Winn, W. (1993). A conceptual basis for educational applications of virtual reality. (Technical Publication R-93-9; Human Interface Technology Laboratory of the Washington Technology Center). University of Washington.

Witmer, B. G., et Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. https://doi.org/10.1162/105474698565686