Tecnologías emergentes en la educación: Potencial y desafíos de la personalización a través de la IA y la Blockchain

Contenido principal del artículo

Yassine El Bahlouli

Resumen

Este artículo examina cómo la analítica del aprendizaje, la inteligencia artificial (IA) y la tecnología blockchain están transformando la personalización de la educación. Al explorar la literatura reciente, identifica las contribuciones y desafíos de estas tecnologías en la mejora de los itinerarios educativos. El análisis sugiere que la integración de estas tecnologías ofrece oportunidades únicas para la personalización del aprendizaje, al mismo tiempo que plantea preguntas importantes sobre seguridad, privacidad y equidad. La convergencia de la IA, la analítica del aprendizaje y la tecnología blockchain promete una revolución en la forma en que se imparte y recibe la educación, permitiendo una adaptación precisa al perfil de cada aprendiz. Sin embargo, esta integración tecnológica requiere una profunda reflexión sobre los marcos éticos y regulatorios para asegurar que la personalización de la educación beneficie a todos, sin comprometer la seguridad de los datos ni exacerbar las desigualdades. El artículo aboga por una colaboración estrecha entre desarrolladores tecnológicos, educadores y responsables de políticas para abordar estos desafíos y aprovechar plenamente el potencial de estas tecnologías emergentes en la educación.

Detalles del artículo

Cómo citar
El Bahlouli, Y. (2024). Tecnologías emergentes en la educación: Potencial y desafíos de la personalización a través de la IA y la Blockchain. Mediaciones Y Mediatizaciones, (19). https://doi.org/10.52358/mm.vi19.406
Sección
Varia - Síntesis de conocimientos o revisión de bibliografía

Citas

Alammary, A., Alhazmi, S., Almasri, M., et Gillani, S. (2019). Blockchain-based applications in education: A systematic review. Applied Sciences, 9(12), 2400. https://doi.org/10.3390/app9122400 DOI: https://doi.org/10.3390/app9122400

Anne, A. et El Bahlouli, Y. (2023a). Les technologies des registres distribués et de la chaîne de blocs en éducation. The Conversation. https://tinyurl.com/mu6r765r

Anne, A. et El Bahlouli, Y. (2023b). La Technologie des registres distribués (TRD) : Usages et perspectives dans le secteur de l’éducation. Médiations et médiatisations, (14). https://doi.org/10.52358/mm.vi14.307 DOI: https://doi.org/10.52358/mm.vi14.307

Arndt, T., et Guercio, A. (2020). Blockchain-based transcripts for mobile higher-education. International Journal of Information and Education Technology, 10(2). https://doi.org/10.18178/ijiet.2020.10.2.1344 DOI: https://doi.org/10.18178/ijiet.2020.10.2.1344

Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. Holt, Rinehart and Winston.

Baker, R. S., et Siemens, G. (2014). Educational data mining and learning analytics. Dans R. Keith Sawyer (dir.), Cambridge Handbook of the Learning Sciences (p. 253 – 272). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139519526.016

Bandura, A. (1977). Social Learning Theory. Prentice Hall.

Bhaskar, P., Tiwari, C. K., et Joshi, A. (2021). Blockchain in education management: present and future applications. Interactive Technology and Smart Education, 18(1), 1-17. https://doi.org/10.1108/ITSE-07-2020-0102 DOI: https://doi.org/10.1108/ITSE-07-2020-0102

Bidarra, J., et Mamede, H. (2019). Artificial Intelligence et Blockchain in Online Education. Dans G. Ubachs (dir.), The Envisioning Report for Empowering Universities (3rd ed., p. 27-29). EADTU. https://tinyurl.com/bde6zduj

Bruner, J. S. (1960). The Process of Education. Harvard University Press. DOI: https://doi.org/10.4159/9780674028999

Bryson, J. J. (2019). The Past Decade and Future of AI’s Impact on Society. Towards a New Enlightenment? A Transcendent Decade. BBVA. https://www.joannajbryson.org/publications/the-past-decade-and-future-of-ais-impact-on-society

Creswell, J. W., et Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4e éd.). Sage Publications.

Crompton, H., et Burke, D. (2023). Artificial intelligence in Higher Education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00392-8 DOI: https://doi.org/10.1186/s41239-023-00392-8

Devedžić, V. (2004). Web Intelligence and Artificial Intelligence in Education. Journal of Educational Technology & Society, 7(4), 29‑39. https://www.jstor.org/stable/jeductechsoci.7.4.29

Dickler, R. (2021). Learning with and from Artificial Intelligence-Driven Analytics. Society for Learning Analytics Research (SoLAR). https://www.solaresearch.org/2021/11/learning-with-and-from-artificial-intelligence-driven-analytics/

Dillenbourg, P. (2000). Collaborative learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series. Computers & Education. https://doi.org/10.1016/S0360-1315(00)00011-7 DOI: https://doi.org/10.1016/S0360-1315(00)00011-7

Drachsler, H., et Greller, W. (2016). Privacy and analytics: It's a DELICATE issue a checklist for trusted learning analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89–98. https://doi.org/10.1145/2883851.2883893 DOI: https://doi.org/10.1145/2883851.2883893

Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach to Developmental Research. Orienta-Konsultit. https://lchc.ucsd.edu/mca/Paper/Engestrom/Learning-by-Expanding.pdf

Gašević, D., Dawson, S., et Siemens, G. (2014). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64–71. https://doi.org/10.1007/s11528-014-0822-x DOI: https://doi.org/10.1007/s11528-014-0822-x

Greene Nolan, H., et Vang, M. C. (2023). Automated Essay Scoring in Middle School Writing: Understanding Key Predictors of Students’ Growth and Comparing Artificial Intelligence- and Teacher-Generated Scores and Feedback [Report]. Digital Promise. https://eric.ed.gov/?id=ED629956 DOI: https://doi.org/10.51388/20.500.12265/187

Guan, X., Yan, H., Wang, Z., Gao, P., et Ding, B. (2023). Research on Teaching Reform of Artificial Intelligence Course Based on CDIO. SHS Web of Conferences, 152, Article 03005. https://doi.org/10.1051/shsconf/202315203005 DOI: https://doi.org/10.1051/shsconf/202315203005

Holmes, W., Bialik, M., et Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign.

HolonIQ. (2023). Artificial Intelligence in Education. 2023 Survey Insights. https://www.holoniq.com/notes/artificial-intelligence-in-education-2023-survey-insights

Inamorato Dos Santos, A. (dir.), Grech, A., et Camilleri, A. F. (2017). Blockchain in Education. Joint Research Centre. Science for Policy Report. European Commission. https://doi.org/10.2760/60649

Jacob, S., Souissi, S. et Duplantis, L. (2023). Intelligence artificielle et transformation de l'évaluation de programme. Chaire de recherche sur l’administration publique à l’ère numérique, Université Laval. https://tinyurl.com/22c6sbxr

Kabudi, T., Pappas, I. O., et Olsen, D. H. (2021). AI-enabled Adaptive Learning Systems: A systematic mapping of the literature. Computers & Education: Artificial Intelligence, 2, article 100017. https://doi.org/10.1016/j.caeai.2021.100017 DOI: https://doi.org/10.1016/j.caeai.2021.100017

Kelly, G. (1955). The Psychology of Personal Constructs. W.W. Norton & Company.

Lai, C.-L. (2021). Exploring University Students’ Preferences for AI-Assisted Learning Environment: A Drawing Analysis with Activity Theory Framework. Educational Technology & Society, 24(4), 1‑15. https://www.jstor.org/stable/48629241

Luckin, R., Holmes, W., Griffiths, M., et Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson Education. https://tinyurl.com/5n88z5tu

Nagel, D. (2023). Learning Analytics and the Future of Change in the Classroom. Campus Technology. https://tinyurl.com/bdfwuynp

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.

Pedró, F., Subosa, M., Rivas, A. et Valverde, P. (2019). Artificial intelligence in education: challenges and opportunities for sustainable development.UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994

Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press, Inc. DOI: https://doi.org/10.1037/11494-000

Saastamoinen, K., Rissanen, A., et Mutanen, A. (2023). Intelligent Learning in Studying and Planning Courses—New Opportunities and Challenges for Officers. International Baltic Symposium on Science and Technology Education. Scientia Socialis Ltd. https://eric.ed.gov/?id=ED629134 DOI: https://doi.org/10.33225/BalticSTE/2023.203

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851 DOI: https://doi.org/10.1177/0002764213498851

Slade, S., et Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510–1529. https://doi.org/10.1177/0002764213479366 DOI: https://doi.org/10.1177/0002764213479366

Torraco, R. J. (2016). Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Human Resource Development Review, 15(4), 404–428. https://doi.org/10.1177/1534484316671606 DOI: https://doi.org/10.1177/1534484316671606

Truby, J. (2018). Decarbonizing Bitcoin: Law and Policy Choices for Reducing the Energy Consumption of Blockchain Technologies and Digital Currencies. Energy Research & Social Science, 44, 399-410. https://doi.org/10.1016/j.erss.2018.06.009 DOI: https://doi.org/10.1016/j.erss.2018.06.009

University of Southern California. (2021). Organizing your social sciences research paper. 6. The Methodology. USC Libraries. https://libguides.usc.edu/writingguide/methodology

University System of Georgia. (2024). University System of Georgia Working with Georgia State University’s National Institute for Student Success. https://tinyurl.com/bdcwp828

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.

Whittemore, R., et Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x DOI: https://doi.org/10.1111/j.1365-2648.2005.03621.x

Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A., Hollander, R., Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A., et Pasquale, F. (2017). Ten simple rules for responsible big data research. PLoS Computational Biology, 13(3). https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005399 DOI: https://doi.org/10.1371/journal.pcbi.1005399