Assessing in the Age of AI: The Paradox of Dual Expertise

Main Article Content

Christiane Caneva

Abstract

The rise of generative artificial intelligence (AI) is reshaping higher education and profoundly challenging assessment practices. This article offers a reflective analysis of the tensions between disciplinary expertise, AI literacy, and educational goals. Rather than framing the debate as a choice between banning or integrating AI, it calls for a rethinking of the alignment between purposes, methods, and assessment approaches, with the aim of preparing students for a critical and ethical use of these technologies. Returning to pedagogical fundamentals emerges as a necessary step to preserve education as a space for human emancipation in a world where AI is omnipresent.

Downloads

Download data is not yet available.

Article Details

How to Cite
Caneva, C. (2025). Assessing in the Age of AI: The Paradox of Dual Expertise. Mediations and Mediatizations, (22), 123–130. https://doi.org/10.52358/mm.vi22.495
Section
Discussions and debates

References

Bertoni, E., Cosgrove, J. et Cachia, R. (2024). Digital skills gaps - a closer look at the Digital Skills Index (DSI 2.0), European Commission, Ispra, JRC140617.

Digital Education Council (2024). Digital Education Council global AI student survey 2024. Consulté le 10 avril 2025, sur https://www.digitaleducationcouncil.com/post/digital-education-council-global-ai-student-survey-2024

Digital Education Council (2025). Global AI faculty survey. Consulté le 10 avril 2025, sur https://mcusercontent.com/

Guo, K. et Wang, D. (2023). To resist it or to embrace it? Examining ChatGPT’s potential to support teacher feedback in EFL writing. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12146-0

Hargittai, E. (2001). From the ‘Digital Divide’toDigital Inequality’: Studying internet use as penetration increases. Princeton Center for Arts and Cultural Policy Studies, Working Paper.

Lanarès, J., Laperrouza, M. et Sylvestre, E. (2023). Design pédagogique. Éditions Épistémé.

Merton, R. K. (1968). The Matthew Effect in Science. Science, 159(3810), 56-63. https://doi.org/10.1126/science.159.3810.56

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., et Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041.

OpenAI. (2025, 5 octobre). ChatGPT (GPT-5.5) [grand modèle de langage]. https://chatgpt.com/

Rege Colet, N. et Berthiaume, D. (2013). Comment choisir des méthodes d’évaluation adaptées. Dans N. Rege Colet et M. Romainville (dir.), La pédagogie de l’enseignement supérieur : repères théoriques et applications pratiques (Vol. 1, p. 55-71). De Boeck Supérieur.

Robinson, L., Schulz, J., Blank, G., Ragnedda, M., Ono, H., Hogan, B. et Khilnani, A. (2020). Digital inequalities 2.0: Legacy inequalities in the information age. First Monday, 25(7). https://doi.org/10.5210/fm.v25i7.10842

Samala, A. D., et Rawas, S. (2025). Bias in artificial intelligence: smart solutions for detection, mitigation, and ethical strategies in real-world applications. International Journal of Artificial Intelligence, 14(1), 32-43. http://doi.org/10.11591/ijai.v14.i1.pp32-43

Service de didactique universitaire et compétences numériques (2025). Rapport d’activité 2024-2025 [Document interne]. Université de Fribourg.

Shata, A. et Hartley, K. (2025). Artificial intelligence and communication technologies in academia: Faculty perceptions and the adoption of generative AI. International Journal of Educational Technology in Higher Education, 22, Article 14. https://doi.org/10.1186/s41239-025-00511-7

Spirgi, L., et Seufert, S. (2025). GenAI as a learning assistant: An empirical study in higher education. Dans Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) – Volume 2 (p. 27-34). SciTePress. https://doi.org/10.5220/0013199300003932

Wieman, C. E. (2019). Expertise in university teaching & the implications for teaching effectiveness, evaluation & training. Dædalus: Journal of the American Academy of Arts & Sciences, 148(4), 47-67. https://doi.org/10.1162/daed_a_01760

Xia, Q., Weng, X., Ouyang, F., Lin, T. J. et Chiu, T. K. F. (2024). A scoping review on how generative artificial intelligence transforms assessment in higher education. International Journal of Educational Technology in Higher Education, 21(1), Article 40. https://doi.org/10.1186/s41239-024-00468-z