Technologies émergentes en éducation : potentiel et défis de la personnalisation via l'IA et la chaîne de blocs

Contenu principal de l'article

Yassine El Bahlouli

Résumé

Cet article examine comment l'analytique de l'apprentissage, l'intelligence artificielle (IA) et la chaîne de blocs transforment la personnalisation de l'éducation. En explorant la littérature récente, il identifie les contributions et les défis de ces technologies dans l'amélioration des parcours éducatifs. L'analyse suggère que l'intégration de ces technologies offre des opportunités uniques pour la personnalisation de l'apprentissage, tout en soulevant des questions importantes sur la sécurité, la confidentialité et l'équité. La convergence de l'IA, de l'analytique de l'apprentissage et de la technologie de la chaîne de blocs promet une révolution dans la manière dont l'éducation est délivrée et reçue, permettant une adaptation précise au profil de chaque apprenant. Cette intégration technologique, cependant, exige une réflexion approfondie sur les cadres éthiques et réglementaires pour garantir que la personnalisation de l'éducation bénéficie à tous, sans compromettre la sécurité des données ni accentuer les inégalités. L'article plaide pour une collaboration étroite entre développeurs technologiques, éducateurs et décideurs politiques pour relever ces défis et exploiter pleinement le potentiel de ces technologies émergentes dans l'éducation.

Renseignements sur l'article

Comment citer
El Bahlouli, Y. (2024). Technologies émergentes en éducation : potentiel et défis de la personnalisation via l’IA et la chaîne de blocs. Médiations Et médiatisations, (19), 9–27. https://doi.org/10.52358/mm.vi19.406
Rubrique
Synthèses de connaissances ou revues systématiques de la littérature

Références

Alammary, A., Alhazmi, S., Almasri, M., et Gillani, S. (2019). Blockchain-based applications in education: A systematic review. Applied Sciences, 9(12), 2400. https://doi.org/10.3390/app9122400

Anne, A. et El Bahlouli, Y. (2023a). Les technologies des registres distribués et de la chaîne de blocs en éducation. The Conversation. https://tinyurl.com/mu6r765r

Anne, A. et El Bahlouli, Y. (2023b). La Technologie des registres distribués (TRD) : usages et perspectives dans le secteur de l’éducation. Médiations et médiatisations, (14). https://doi.org/10.52358/mm.vi14.307

Arndt, T., et Guercio, A. (2020). Blockchain-based transcripts for mobile higher-education. International Journal of Information and Education Technology, 10(2). https://doi.org/10.18178/ijiet.2020.10.2.1344

Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. Holt, Rinehart and Winston.

Baker, R. S., et Siemens, G. (2014). Educational data mining and learning analytics. Dans R. Keith Sawyer (dir.), Cambridge Handbook of the Learning Sciences (p. 253-272). Cambridge University Press.

Bandura, A. (1977). Social Learning Theory. Prentice Hall.

Bhaskar, P., Tiwari, C. K., et Joshi, A. (2021). Blockchain in education management: present and future applications. Interactive Technology and Smart Education, 18(1), 1-17. https://doi.org/10.1108/ITSE-07-2020-0102

Bidarra, J., et Mamede, H. (2019). Artificial Intelligence et Blockchain in Online Education. Dans G. Ubachs (dir.), The Envisioning Report for Empowering Universities (3rd ed., p. 27-29). EADTU. https://tinyurl.com/bde6zduj

Bruner, J. S. (1960). The Process of Education. Harvard University Press.

Bryson, J. J. (2019). The Past Decade and Future of AI’s Impact on Society. Towards a New Enlightenment? A Transcendent Decade. BBVA. https://www.joannajbryson.org/publications/the-past-decade-and-future-of-ais-impact-on-society

Creswell, J. W., et Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4e éd.). Sage Publications.

Crompton, H., et Burke, D. (2023). Artificial intelligence in Higher Education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00392-8

Devedžić, V. (2004). Web Intelligence and Artificial Intelligence in Education. Journal of Educational Technology & Society, 7(4), 29‑39. https://www.jstor.org/stable/jeductechsoci.7.4.29

Dickler, R. (2021). Learning with and from Artificial Intelligence-Driven Analytics. Society for Learning Analytics Research (SoLAR). https://www.solaresearch.org/2021/11/learning-with-and-from-artificial-intelligence-driven-analytics/

Dillenbourg, P. (2000). Collaborative learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series. Computers & Education. https://doi.org/10.1016/S0360-1315(00)00011-7

Drachsler, H., et Greller, W. (2016). Privacy and analytics: It's a DELICATE issue a checklist for trusted learning analytics. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, 89-98. https://doi.org/10.1145/2883851.2883893

Engeström, Y. (1987). Learning by Expanding: An Activity-Theoretical Approach to Developmental Research. Orienta-Konsultit. https://lchc.ucsd.edu/mca/Paper/Engestrom/Learning-by-Expanding.pdf

Gašević, D., Dawson, S., et Siemens, G. (2014). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64-71. https://doi.org/10.1007/s11528-014-0822-x

Greene Nolan, H., et Vang, M. C. (2023). Automated Essay Scoring in Middle School Writing: Understanding Key Predictors of Students’ Growth and Comparing Artificial Intelligence- and Teacher-Generated Scores and Feedback [Report]. Digital Promise. https://eric.ed.gov/?id=ED629956

Guan, X., Yan, H., Wang, Z., Gao, P., et Ding, B. (2023). Research on Teaching Reform of Artificial Intelligence Course Based on CDIO. SHS Web of Conferences, 152, Article 03005. https://doi.org/10.1051/shsconf/202315203005

Holmes, W., Bialik, M., et Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning. Center for Curriculum Redesign.

HolonIQ. (2023). Artificial Intelligence in Education. 2023 Survey Insights. https://www.holoniq.com/notes/artificial-intelligence-in-education-2023-survey-insights

Inamorato Dos Santos, A. (dir.), Grech, A., et Camilleri, A. F. (2017). Blockchain in Education. Joint Research Centre. Science for Policy Report. European Commission. https://doi.org/10.2760/60649

Jacob, S., Souissi, S. et Duplantis, L. (2023). Intelligence artificielle et transformation de l'évaluation de programme. Chaire de recherche sur l’administration publique à l’ère numérique, Université Laval. https://tinyurl.com/22c6sbxr

Kabudi, T., Pappas, I. O., et Olsen, D. H. (2021). AI-enabled Adaptive Learning Systems: A systematic mapping of the literature. Computers & Education: Artificial Intelligence, 2, article 100017. https://doi.org/10.1016/j.caeai.2021.100017

Kelly, G. (1955). The Psychology of Personal Constructs. W.W. Norton & Company.

Lai, C.-L. (2021). Exploring University Students’ Preferences for AI-Assisted Learning Environment: A Drawing Analysis with Activity Theory Framework. Educational Technology & Society, 24(4), 1‑15. https://www.jstor.org/stable/48629241

Luckin, R., Holmes, W., Griffiths, M., et Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. Pearson Education. https://tinyurl.com/5n88z5tu

Nagel, D. (2023). Learning Analytics and the Future of Change in the Classroom. Campus Technology. https://tinyurl.com/bdfwuynp

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books.

Pedró, F., Subosa, M., Rivas, A. et Valverde, P. (2019). Artificial intelligence in education: challenges and opportunities for sustainable development. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366994

Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press, Inc.

Saastamoinen, K., Rissanen, A., et Mutanen, A. (2023). Intelligent Learning in Studying and Planning Courses—New Opportunities and Challenges for Officers. International Baltic Symposium on Science and Technology Education. Scientia Socialis Ltd. https://eric.ed.gov/?id=ED629134

Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851

Slade, S., et Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510-1529. https://doi.org/10.1177/0002764213479366

Torraco, R. J. (2016). Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Human Resource Development Review, 15(4), 404-428. https://doi.org/10.1177/1534484316671606

Truby, J. (2018). Decarbonizing Bitcoin: Law and Policy Choices for Reducing the Energy Consumption of Blockchain Technologies and Digital Currencies. Energy Research & Social Science, 44, 399-410. https://doi.org/10.1016/j.erss.2018.06.009

University of Southern California (2021). Organizing your social sciences research paper. 6. The Methodology. USC Libraries. https://libguides.usc.edu/writingguide/methodology

University System of Georgia (2024). University System of Georgia Working with Georgia State University’s National Institute for Student Success. https://tinyurl.com/bdcwp828

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.

Whittemore, R., et Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x

Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A., Hollander, R., Koenig, B. A., Metcalf, J., Narayanan, A., Nelson, A., et Pasquale, F. (2017). Ten simple rules for responsible big data research. PLoS Computational Biology, 13(3). https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005399